Specifications and Options for Pursuit LC Columns

C18
Agilent Pursuit C18 columns feature a C18 phase covalently bonded to special 200 Å ultra-pure silica.

Particle Size ($\mu \mathrm{m}$)	Length (mm)	id	Specifications	Method Development Notes	Working with LC/MS
$\begin{aligned} & 3 \\ & 5 \\ & 10 \end{aligned}$	50-250		Endcapped Pore size: $200 \AA$ Surface area: $200 \mathrm{~m}^{2} / \mathrm{g}$ $\mathrm{pH}: 2.0-8.0$ Carbon load: 12.9%	Start with 5\% methanol or acetonitrile in water as the initial solvent, and 100% methanol or acetonitrile as the final solvent. We recommend adding 0.1% formic acid in both A and B bottles.	If using LC/MS, we recommend starting with $5-10 \mathrm{mM}$ ammonium formate, ammonium acetate, ammonium hydroxide, 0.1% acetic acid or 0.1% formic acid. We recommend against using ammonium bicarbonate.

C8
Agilent Pursuit C8 columns feature a C18 phase covalently bonded to special 200Å ultra-pure silica.

Particle Size ($\mu \mathrm{m}$)	Length (mm)	id	Specifications	Method Development Notes	Working with LC/MS
$\begin{aligned} & 3 \\ & 5 \\ & 10 \end{aligned}$	50-250		Endcapped Pore size: $200 \AA$ Surface area: $200 \mathrm{~m}^{2} / \mathrm{g}$ $\mathrm{pH}: 2.0-8.0$ Carbon load: 7.4\%	Start with 5\% methanol or acetonitrile in water as the initial solvent, and 100% methanol or acetonitrile as the final solvent. We recommend adding 0.1% formic acid in both A and B bottles.	If using LC/MS, we recommend starting with $5-10 \mathrm{mM}$ ammonium formate, ammonium acetate, ammonium hydroxide, 0.1% acetic acid or 0.1% formic acid. We recommend against using ammonium bicarbonate.

PAH
Agilent Pursuit PAH columns feature a specially tailored, polymerically bonded C18 phase designed for the complete resolution of polycyclic aromatic hydrocarbons (PAHs).

Particle Size ($\mu \mathrm{m}$)	Length (mm)	id	Specifications	Method Development Notes	Working with LC/MS
$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.6 \end{aligned}$	Endcapped Pore size: $200 \AA$ Surface area: $200 \mathrm{~m}^{2} / \mathrm{g}$ pH: 2.0-8.0	Start with 5\% methanol or acetonitrile in water as the initial solvent, and 100% methanol or acetonitrile as the final solvent. We recommend adding 0.1% formic acid in both A and B bottles.	If using LC/MS, we recommend starting with $5-10 \mathrm{mM}$ ammonium formate, ammonium acetate, ammonium hydroxide, 0.1% acetic acid or 0.1% formic acid. We recommend against using ammonium bicarbonate

Diphenyl

Agilent Pursuit Diphenyl columns utilize strong dipole-dipole hydrogen bonding and pi-pi mechanisms for different selectivity with aromatic compounds. They are a dependable alternative to ZORBAX Phenyl phases, such as Eclipse Plus Phenyl-Hexyl or SB-Phenyl.

Particle Size ($\mu \mathrm{m}$)	Length (mm)	id	Specifications	Method Development Notes	Working with LC/MS
$\begin{array}{\|l\|} \hline 3 \\ 5 \\ 10 \end{array}$	50-250	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.6 \end{aligned}$	Endcapped Pore size: $200 \AA$ Surface area: $200 \mathrm{~m}^{2} / \mathrm{g}$ $\mathrm{pH}: 2.0-8.0$ Carbon load: 7.3\%	Start with 5\% methanol or acetonitrile in water as the initial solvent, and 100% methanol or acetonitrile as the final solvent. We recommend adding 0.1% formic acid in both A and B bottles. This column can be used with 100% aqueous.	If using LC/MS, we recommend starting with $5-10 \mathrm{mM}$ ammonium formate, ammonium acetate, ammonium hydroxide, 0.1% acetic acid or 0.1% formic acid. We recommend against using ammonium bicarbonate.

PFP
Agilent Pursuit PFP columns deliver excellent separation of polar (halogenated) analytes and positional isomers under standard reversed phase conditions.

Particle Size ($\mu \mathrm{m}$)	Length (mm)	id	Specifications	Method Development Notes	Working with LC/MS
$\begin{array}{\|l} 3 \\ 5 \\ 10 \end{array}$	50-250	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.6 \end{aligned}$	Endcapped Pore size: $200 \AA$ Surface area: $200 \mathrm{~m}^{2} / \mathrm{g}$ pH: 2.0-8.0 Carbon load: 6.3%		If using LC/MS, we recommend starting with $5-10 \mathrm{mM}$ ammonium formate, ammonium acetate, ammonium hydroxide, 0.1% acetic acid or 0.1% formic acid. We recommend against using ammonium bicarbonate.

