

EPA Groundwater Standards

Your essential resource for Agilent ULTRA chemical standards

Table of contents

Introduction	3	EPA Method 8081B	18
About Agilent standards	3	EPA Method 8082A	19
Products	3	EPA Method 8091	20
Markets	3	EPA Method 8095	21
Custom products	3	EPA Method 8100	22
Quality control laboratory	4	EPA Method 8121	23
Quality control validation levels	4	EPA Method 8141B	24
Triple certification	5	EPA Method 8150B, 8151A	25
Level 2 reference material Certificate of Analysis	6	Shooters – Open and shoot spiking standards	26
GHS compliance	7	EPA Method 8240B	27/28
		EPA Method 8260B	29/30
EPA Methods	8	EPA Method 8270D	31
EPA Method 8010B	8	Convenient OMNIprep mixtures	32
EPA Method 8011	9	Calibration mixtures for EPA Method 8270D	33
EPA Method 8021C	10	EPA Method 8280B, 8290A	34
EPA Method 8020A	11	EPA Method 8310	35
EPA Method 8021B	12/13	EPA Method 8315A	36
EPA Method 8030A	14	EPA Method 8318A	36
EPA Method 8031, 8032A, 8033	14	EPA Method 8330A	37
EPA Method 8041A	15	EPA Method 8332	38
EPA Method 8061A	16	EPA Method 8410	38
EPA Method 8070A	17	EPA Method 8440	38
EPA Method 8080A	17	Agilent Service and Support	39

About Agilent standards

Agilent is a global leader in chromatography and spectroscopy, as well as an expert in chemical standards manufacturing. Agilent offers certified reference materials, QC standards, reagents, and buffers to complement our extensive line of instruments, columns, sample preparation products, consumables, and services. Our portfolio provides laboratories with full workflow solutions for efficient, accurate results.

Agilent has an extensive list of chemical standards, matched by expertise in designing and formulating custom standards to exacting specifications. Agilent products are available through our global distribution channels, and with our logistics capabilities we offer rapid turnaround time on all orders.

With over 40 years of technical expertise in measurement science, we provide innovative, quality products to address the entire analytical chemistry workflow for laboratories around the world.

Products

- Certified reference materials (CRM)
- Reference materials (RM)
- Calibration standards
- Markets

Environmental

- Petrochemicals
- PCB/PBB
- Halocarbons
- VOC/Semi-VOC
- Pesticides
- Dioxins and furans

Life Science

IQ/OQ/PQ standards

Linearity standards

- Pharmaceutical
- Amino and nitroaromatics
- Pharma and vet drugs
- PAHs _
- Lipids
- Phenols
- Dyes

- Biopharma
- Academic and research
- University
- Governmental

Industrial and Mining

Quality check samples

Wash solution and diluents

Buffers and reagents

Petrochemical

_

- Matrix oils
- Metals in biodiesel
- Organometallic

Elemental Analysis

- Single element
- Multi-element

Custom products

Do you need a custom defined reference material or other chemical solution unique to your laboratory or testing procedure? If the product you require is not available as an Agilent product, we can prepare it for you on a custom basis. Custom reference materials are a fast, economical way to meet your specific laboratory needs.

Agilent maintains an expansive compatibility database, integrating 40 years of manufacturing and guality control data to create stable and reliable custom product formulations. Choose from any of our three quality control validation levels (see Page 4)

Visit www.agilent.com/chem/standards to request a quote.

Food and Beverages

- Allergens
- Food authenticity

Quality control laboratory

Agilent operates an ISO 17025 accredited quality control laboratory and is accredited to ISO Guide 34 as a reference material producer for the manufacture of certified reference materials (CRM).

Rely on the expertise of our applications development group for:

- Method development
- Pre- and postfill analysis
- Stability testing and protocols
- Homogeneity testing

Quality control validation levels

Chemical standards manufactured by Agilent are supplied with a lot-specific certificate of analysis (C of A) that reflects the associated quality control validation level. Certificates of analysis can ship with the product and are available online. All Agilent products, unless otherwise stated, are Level II - ISO Guide 34 reference materials.

		Reported Value	Reported Uncertainty	Former Name	Solutions	Neats	Lead Time (Customs)
Level I	ISO Guide 34 RM	True (calculated)	U _{char}	Gravimetric	Y	Y	5 business days
Level II	ISO Guide 34 RM	True (analytical)	U _{char}	Full validation	Y	Y	7 to 10 business days
Level III	ISO Guide 34	Certified	U _{exp}	ISO Guide 34	Y		15 to 20 business days

Level I solution: A reference material (RM) prepared gravimetrically in accordance with ISO Guide 34 and under the Agilent ISO 9001 registered quality system. The neat materials used for the product are verified by an Agilent ISO 17025 laboratory and under the Agilent ISO Guide 34 accreditation. For each analyte, the true value, with its uncertainty value calculated at 95% confidence level, is reported.

Level I neat: RM prepared in accordance with ISO Guide 34 and under the Agilent ISO 9001 registered quality system. The true value (% purity) is reported.

Level II solution: RM prepared gravimetrically in accordance with ISO Guide 34 and under the Agilent ISO 9001 registered quality system. The neat materials used for the product are verified by an Agilent ISO 17025 laboratory and under the Agilent ISO Guide 34 accreditation. The analyte concentrations are verified by an Agilent ISO 17025 accredited laboratory. For each analyte, the true value, with its uncertainty value calculated at 95% confidence level, is reported.

Level II neat: RM prepared in accordance with ISO Guide 34 and under the Agilent ISO 9001 registered quality system. The materials used for this product are verified by the Agilent ISO 17025 laboratory and under the Agilent ISO Guide 34 accreditation. The true value (% purity), with its uncertainty value calculated at 95% confidence level, is reported.

Level III solution: RM prepared gravimetrically in accordance with ISO Guide 34 and under the Agilent ISO 9001 registered quality system. The neat materials used for this product are verified by the Agilent ISO 17025 laboratory and under the Agilent ISO Guide 34 accreditation. The analyte concentrations are verified by an Agilent ISO 17025 accredited laboratory. For each analyte, the certified value is reported with its uncertainty value calculated as the expanded uncertainty, in accordance with ISO Guide 35.

Triple certification

Agilent is committed to product integrity by offering customers the assurance of triple certification to ISO standards.

Agilent operates under an ISO 9001 registered quality management system, where an accrediting body (TUV) attests to the quality of our methods, procedures, testing, production, and record keeping.

Our quality control laboratory is accredited to ISO 17025 (ANAB) for technical competence to perform testing of organic and inorganic materials and certified reference materials, as defined in our scope, accessible online at www.agilent.com/chem/17025

Agilent is further accredited to ISO Guide 34 (ANAB) for technical competence as a reference material producer of certified reference materials. This requires Agilent to identify and document the major components of uncertainty including homogeneity, short- and long-term stability, and uncertainty due to analytical characterization and manufacturing.

The most current Agilent certifications are accessible at www.agilent.com/quality

Tips and tools

To view our entire portfolio of over 7,000 standards, all manufactured under ISO 17025 Guide 34, visit www.agilent.com/chem/standards

Level 2 reference material Certificate of Analysis

	C4-C24	4 Even Carbon Satur	ated FAME N	lix	
Product Numbe	er: 5191-4278			Page:	1 of 1
Lot Number:	CR-5364	Lot Issue Date: 17	-Nov-2017	Expiration Date	: 31-Dec-2019
9001 registered	quality system, and rue value and uncer	ial (RM) was manufactured the analyte concentrations tainty value at the 95% co	were verified by	our ISO 17025	accredited
Analyte		CAS#	Analyte Lot	True Va	lue
methyl butanoat	e	000623-42-7	RM04575	1005 ± 5	µg/mL
methyl hexanoa	te	000106-70-7	NT01630	1005 ± 5	µg/mL
methyl octanoat	e	000111-11-5	NT01094	1003 ± 5	µg/mL
methyl decanoa	te	000110-42-9	NT00187	1004 ± 5	µg/mL
methyl laurate		000111-82-0	NT01095	1003 ± 5	µg/mL
methyl tetradeca	anoate	000124-10-7	NT00188	1003 ± 5	µg/mL
methyl palmitate	3	000112-39-0	RM07128	1001 ± 5	µg/mL
methyl octadeca	anoate	000112-61-8	RM12285	1002 ± 5	µg/mL
methyl arachida	te	001120-28-1	RM11588	1003 ± 5	µg/mL
methyl docosan	oate	000929-77-1	NT01096	1004 ± 5	µg/mL
tetracosanoic a	cid methyl ester	002442-49-1	NT01097	1004 ± 5	µg/mL
Matrix: hexar	ne				
- Agilent uses bal		weights traceable to NIST in c re in the manufacturing of the:		NSI/NCSL Z-540-1	and ISO
					Bourgeois presentative

An example of a Certificate of Analysis for an Agilent reference material.

GHS compliance

Agilent is a certified GHS author for SDS and GHS compliant labeling. Chemical products manufactured and distributed by Agilent are compliant with the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). Safety Data Sheets (SDS) and labels are prepared in accordance with regulations and in the following languages:

European CLP Regulation

Regulation 1272/2008

- Chinese (standard _ _
 - Mandarin)
- Czech _

_

_

_

- Danish
- Dutch
- English _

Finnish

- Estonian _
 - Russian Spanish
 - French
- German _

Additional languages are available upon request. As regulations are updated and expanded, Agilent will maintain up-to-date records online at www.agilent.com

Italian

_

_

_

_

_

Japanese

Portuguese

Romanian

Swedish

Korean

Polish

USA GHS-OSHA Regulation

Hazcom 2012

- English Spanish _
- _ French

Chinese GHS Regulation

GB/T 17519-2013 and GB/T 16483-2008

- Chinese (standard Mandarin)
- English

Tips and tools

To view our entire portfolio of over 7,000 standards, all manufactured under ISO 17025 Guide 34, visit www.agilent.com/chem/standards

EPA Method 8010B

Volatile halocarbons

Method 8010B is used to determine volatile halogenated organic pollutants, using either purge and trap or direct injection, and an electrolytic conductivity (Hall) detector. Method 8010B has been deleted from SW-846 (effective with Update III).

Recommended Method 8010B Halogenated Volatiles Mixture IX

Description	Analytes			Total Vol.	Part No.
36 analytes,	Allyl chloride	1,3-Dichlorobenzene	Methyl iodide	1 x 1 mL	HCM-801-1
at 100 µg/mL, in methanol	Bromodichloromethane Bromoform	1,4-Dichlorobenzene 1,1-Dichloroethane	1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane		
	Bromomethane	1,2-Dichloroethane	Tetrachloroethene		
	Carbon tetrachloride	1,1-Dichloroethene	1,1,1-Trichloroethane		
	Chlorobenzene	1,2-Dichloropropane	1,1,2-Trichloroethane		
	Chloroethane	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene		
	Chloroform	trans-1,3-Dichloropropene	trans-1,4-Dichloro-2-butene		
	Chloromethane	Dibromochloromethane	Trichloroethene		
	1,2-Dibromo-3-chloropropane	Dibromomethane	Trichlorofluoromethane		
	1,2-Dibromoethane	Dichlorodifluoromethane	1,2,3-Trichloropropane		
	1,2-Dichlorobenzene	Methylene chloride	Vinyl chloride		

IX Contains appendix IX compounds.

Recommended Method 8010B 2-Chloroethyl Vinyl Ether Standards

Description	Standard	Total Vol.	Part No. 100 µg/mL	Part No. 5,000 μg/mL
1 standard, in methanol	2-Chloroethyl vinyl ether	1 x 1 mL	HC-070-1	EPA-1016-1

Recommended Method 8010B Chloroprene Solution

Description	Standard	Total Vol.	Part No.
1 standard, at 100 µg/mL, in methanol	Chloroprene (no xylenes)	1 x 1 mL	HC-491-1

VOC Gas Mixtures

Description	Analytes			Total Vol.	Part No. 200 µg/mL	Part No. 2,000 µg/mL
6 analytes, in methanol	Bromomethane Chloroethane	Dichlorodifluoromethane Chloromethane	Trichlorofluoromethane Vinyl chloride	1 x 1 mL	DWM-584-1	DWM-544-1

Recommended Standards

Recommended Method 8010B Internal and Surrogate Standard Mix

Description	Analytes		Total Vol.	Part No.	EPA Method 8010B	Part No.
3 analytes, at 1,500 µg/mL, in methanol	4-Bromochlorobenzene Bromochloromethane	4-Bromofluorobenzene	1 x 1 mL	STM-401-1	Calibration standards	HCM-801-1 HC-070-1 HC-491-1
					Surrogate standard	STM-401-1

Technical note

2-Chloroethyl vinyl ether is stable in solution by itself, but breaks down in the presence of other halocarbons. Agilent therefore packages this analyte as a single component solution. If you prepare a working standard that contains 2-chloroethyl vinyl ether mixed with other halocarbons, be sure to monitor the stability of this analyte.

Dibromoethane and dibromochloropropane

Method 8011 is used to determine 1,2-dibromoethane and 1,2-dibromo-3-chloropropane, using microextraction, and capillary column GC with an ECD.

Recommended Method 8011 Mixtures IX

Description	Analytes	Total Vol.	Part No. 200 µg/mL	Part No. 2,000 µg/mL
2 analytes, in methanol	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	1 x 1 mL	DWM-504N-1	HCM-812-1

Recommended Standards

EPA Method 8011	Part No.
Calibration standards	DWM-504N-1 HCM-812-1

^{IX} Contains appendix IX compounds.

EPA Method 8015C

Nonhalogenated organics

Method 8015C is used to determine volatile nonhalogenated organics, using either purge and trap or direct injection, and a flame ionization detector (FID).

Recommended Method 8015C Calibration Standard

Description	Analytes			Total Vol.	Part No.
18 analytes, at 2,000 µg/mL, in water	Acetone Acetonitrile Allyl alcohol 1-Butanol (n-butyl alcohol) 2-Butanone (MEK) Diethyl ether	1,4-Dioxane Ethanol Ethyl acetate Ethylene glycol Isobutyl alcohol (2-methyl-1-propanol) Isopropyl alcohol (2-propanol)	Methanol 4-Methyl-2-pentanone (MIBK) 2-Pentanone 1-Propanol (<i>n</i> -propyl alcohol) Propionitrile <i>tert</i> -Butyl alcohol (2-methyl-2-propanol)	1 x 1 mL	NVM-8015A-1

Recommended Method 8015C Calibration Standard

Description	Analytes		Total Vol.	Part No.
4 analytes, at 2,000 μg/mL, in methanol	2-Picoline <i>N</i> -Nitrosodi- <i>n</i> -butylamine	<i>o</i> -Toluidine Pyridine	1 x 1 mL	NVM-8015B-1

Recommended Method 8015C Internal Standard Mixture

Description	Analytes	Total Vol.	Part No.
3 analytes, at 2,000 µg/mL, in water	2-Chloroacrylonitrile Hexafluoro-2-propanol Hexafluoro-2-methyl-2-propanol	1 x 1 mL	STM-580-1

GRO Aromatic Calibration Mix

Description	Analytes		Total Vol.	Part No.
5 analytes, at 2,000 μg/mL, in methanol	<i>n</i> -Decane (C ₁₀) <i>n</i> -Heptane (C ₇) <i>n</i> -Hexane (C ₆)	<i>n</i> -Nonane (C ₉) <i>n</i> -Octane (C ₈)	1 x 1 mL	SAK-100-1

EPA Method 8015C	Part No.
Calibration standards	NVM-8015A-1 NVM-8015B-1
Internal standard	STM-580-1

EPA Method 8021C

DRO Mixture

Description	Analytes		Total Vol.	Part No.
10 analytes, at 2,000 μg/mL, in methylene chloride	$\begin{array}{c} n\text{-}\text{Decane}~(\text{C}_{10})\\ n\text{-}\text{Docosane}~(\text{C}_{22})\\ n\text{-}\text{Dodecane}~(\text{C}_{12})\\ n\text{-}\text{Eicosane}~(\text{C}_{20})\\ n\text{-}\text{Hexacosane}~(\text{C}_{26}) \end{array}$	<i>n</i> -Hexadecane (C ₁₆) <i>n</i> -Octacosane (C ₂₈) <i>n</i> -Octadecane (C ₁₈) <i>n</i> -Tetracosane (C ₂₄) <i>n</i> -Tetradecane (C ₁₄)	1 x 1 mL	UST-200-1

Non-Halogenated Volatiles Mixture ^{IX}

Description	Analytes		Total Vol.	Part No.
12 analytes,	Acetonitrile	Ethyl methacrylate	1 x 1 mL	NVM-8015-1
at 100 µg/mL,	Acrylamide	Isobutyl alcohol		
in methanol	2-Butanone (MEK)	Methacrylonitrile		
	Diethyl ether	Methyl methacrylate		
	1,4-Dioxane	4-Methyl-2-pentanone (MIBK)		
	Ethyl alcohol	Propionitrile		

^{IX} Contains appendix IX compounds.

Non-Halogenated Volatiles Mixture IX

Description	Analytes	Total Vol.	Part No.
4 analytes, at 2,000 μg/mL, in methanol	2-Butanone (MEK) Diethyl ether Ethyl alcohol 4-Methyl-2-pentanone (MIBK)	1 x 1 mL	NVM-8115-1

IX Contains appendix IX compounds.

Tips and tools

Find more EPA Method standards online at www.agilent.com/chem/standards

EPA Method 8020A

Aromatic volatiles

Method 8020A is used to determine volatile aromatic organic compounds, using either purge and trap or direct injection, and a PID. Method 8020A has been deleted from SW-846 (effective with Update III).

Recommended Method 8020A Aromatic Volatiles Mixture IX

Description	Analytes			Total Vol.	Part No.
11 analytes, at 100 μg/mL, in methanol	Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	1,4-Dichlorobenzene Ethylbenzene <i>o</i> -Xylene <i>m</i> -Xylene	<i>p</i> -Xylene Styrene Toluene	1 x 1 mL	AMM-802-1

^{IX} Contains appendix IX compounds.

Aromatic Volatiles Mixture IX

Description	Analytes			Total Vol.	Part No.
10 analytes, at 2,000 µg/mL, in methanol	Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	1,4-Dichlorobenzene Ethylbenzene <i>o</i> -Xylene	<i>m</i> -Xylene <i>p</i> -Xylene Toluene	1 x 1 mL	AMM-812-1

^{IX} Contains appendix IX compounds.

Methyl tert-Butyl Ether Solution

Description	Analyte	Total Vol.	Part No.
1 analyte at 2,000 μg/mL, in methanol	Methyl tert-butyl ether (MTBE)	1 x 1 mL	STS-440-1

Recommended Method 8020A Internal and Surrogate Standard Mixture

Description	Analyte			Total Vol.	Part No.
5 analytes, at 1,500 µg/mL, in methanol	4-Bromochlorobenzene 4-Bromofluorobenzene	1,4-Difluorobenzene Fluorobenzene	α, α, α -Trifluorotoluene	1 x 1 mL	STM-510-1

PVOC Mixture

Description	Analyte			Total Vol.	Part No.
7 analytes, at 1,000 μg/mL, in methanol	Benzene Ethylbenzene Methyl <i>tert</i> -butyl ether (M	<i>o</i> -Xylene <i>m</i> -Xylene ITBE)	<i>p</i> -Xylene Toluene	1 x 1 mL	UST-141-1

Internal and Surrogate Standards

Description	Standard	Total Vol.	Part No. 200 µg/mL	Part No. 2,000 µg/mL
1 standard, in methanol	α, α, α -Trifluorotoluene	1 x 1 mL	STS-221-1	STS-220N-1

Surrogate Standard Mixture

Description	Analyte		Total Vol.	Part No.
2 analytes, at 2,000 µg/mL, in methanol	4-Bromofluorobenzene	α, α, α -Trifluorotoluene	1 x 1 mL	STM-410-1
3 analytes, at 2,000 μg/mL, in methanol	4-Bromochlorobenzene 1,4-Difluorobenzene	Fluorobenzene		STM-420-1

EPA Method 8020A	Part No.
Calibration standard	AMM-802-1
Internal and surrogate standard	STM-510-1

EPA Method 8021B

Halogenated and aromatic volatile organics

Method 8021B is used to determine aromatic and halogenated volatiles, using either purge and trap, headspace, vacuum distillation, or direct injection. Detection is carried out with a PID and ELCD in series.

Recommended Method 8021B VOC Mixtures

Description	Analytes			Total Vol.	Part No. 200 µg/mL	Part No. 2,000 µg/mL
60 analytes, in methanol	Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	<i>trans</i> -1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene <i>cis</i> -1,3-Dichloropropene <i>trans</i> -1,3-Dichloropropene 1,2-Dibromo-3-chloropropane Dibromoethane Dibromoethane 1,2-Dibromoethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene 4-Isopropylbenzene Methylene chloride <i>n</i> -Butylbenzene Naphthalene	<i>o</i> -Xylene <i>m</i> -Xylene <i>p</i> -Xylene <i>sec</i> -Butylbenzene Styrene <i>tert</i> -Butylbenzene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Tetrachloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloropropane Trichloroethene 1,2,3-Trichloropropane Trichlorofluoromethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride	1 x 1 mL	DWM-580-1	DWM-588-1

Recommended Method 8021B Halogenated Volatiles Mixture

Description	Analytes			Total Vol.	Part No.
6 analytes, at 2,000 μg/mL, in methanol	1,3-Dichloro-2-propanol 2-Chloroethanol	Allyl chloride Benzyl chloride	Bis(2-chloroisopropyl) ether Chloromethyl methyl ether	1 x 1 mL	HCM-822A-1

Recommended Method 8021B Additional Analyte Standards

Analyte	Total Vol.	Part No. 100 µg/mL	Part No. 5,000 μg/mL
2-Chloroethyl vinyl ether, in methanol	1 x 1 mL	HC-070-1	EPA-1016-1

EPA Method 8021B Kit

Description	Standards		Part No.
Contains 6 ampoules, 1 x 1 mL of each standard	VOC mixture (DWM-588-1)	Chloroprene solution (HC-491-1)	AMK-8021
	Halogenated Volatiles mix (HCM-822-1)	Surrogate standard mix (STM-431-1)	
	Chloroethyl vinyl ether soln. (HC-070-1)	Internal standard mix (STM-240N-1)	

EPA Method 8021B	Part No.
Calibration standards	DWM-588-1 HCM-822A-1 HC-070-1 HC-491-1
Surrogate standard	STM-431-1
Internal standard	STM-240N-1

Recommended Method 8021B Surrogate Standard Mixture

Description	Analytes		Total Vol.	Part No.
2 analytes, at 1,500 µg/mL, in methanol	4-Bromochlorobenzene	1,4-Dichlorobutane	1 x 1 mL	STM-431-1

Recommended Method 8021B Internal Standard Mixture

Description	Analytes		Total Vol.	Part No.
2 analytes, at 2,000 µg/mL, in methanol	2-Bromo-1-chloropropane	Fluorobenzene	1 x 1 mL	STM-240N-1

VOC Mixture with MTBE

Description	Analytes				Total Vol.	Part No.
55 analytes,	Benzene	Dibromochloromethane	2,2-Dichloropropane	Tetrachloroethene	1 x 1 mL	DWM-596-1
at 2,000 µg/mL,	Bromobenzene	1,2-Dibromo-3-chloropropane	1,1-Dichloropropene	Toluene		
in methanol	Bromochloromethane	1,2-Dibromoethane	cis-1,3-Dichloropropene	1,2,3-Trichlorobenzene		
	Bromodichloromethane	Dibromomethane	trans-1,3-Dichloropropene	1,2,4-Trichlorobenzene		
	Bromoform	1,2-Dichlorobenzene	Ethylbenzene	1,1,1-Trichloroethane		
	n-Butylbenzene	1,3-Dichlorobenzene	Hexachlorobutadiene	1,1,2-Trichloroethane		
	sec-Butylbenzene	1,4-Dichlorobenzene	Isopropylbenzene	Trichloroethene		
	tert-Butylbenzene	1,1-Dichloroethane	4-Isopropyltoluene	1,2,3-Trichloropropane		
	tert-Butyl methyl ether	1,2-Dichloroethane	Methylene chloride	1,2,4-Trimethylbenzene		
	Carbon tetrachloride	1,1-Dichloroethene	Naphthalene	1,3,5-Trimethylbenzene		
	Chlorobenzene	cis-1,2-Dichloroethene	<i>n</i> -Propylbenzene	o-Xylene		
	Chloroform	trans-1.2-Dichloroethene	Styrene	<i>m</i> -Xylene		
	2-Chlorotoluene	1,2-Dichloropropane	1,1,1,2-Tetrachloroethane	p-Xylene		
	4-Chlorotoluene	1,3-Dichloropropane	1,1,2,2-Tetrachloroethane	1 3		

VOC Mixtures (No Gases)

Description	Analytes				Total Vol.	Part No. 200 µg/mL	Part No. 2,000 µg/mL
54 analytes, in methanol	Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform <i>n</i> -Butylbenzene <i>sec</i> -Butylbenzene <i>tert</i> -Butylbenzene Carbon tetrachloride Chlorobenzene Chloroform 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane	1,1-Dichloropropene <i>cis</i> -1,3-Dichloropropene <i>trans</i> -1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene 4-Isopropylbenzene Methylene chloride Naphthalene <i>n</i> -Propylbenzene Styrene 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 0-Xylene <i>m</i> -Xylene <i>p</i> -Xylene	1 x 1 mL	DWM-583-1	DWM-589N-1

VOC Gas Mixtures

Description	Analytes			Total Vol.	Part No. 200 µg/mL	Part No. 2,000 μg/mL
6 analytes, in methanol	Bromomethane Chloroethane	Chloromethane Dichlorodifluoromethane	Trichlorofluoromethane Vinyl chloride	1 x 1 mL	DWM-584-1	DWM-544-1

Technical note

2-Chloroethyl vinyl ether is stable in solution by itself, but breaks down in the presence of other halocarbons. Agilent therefore packages this analyte as a single component solution. If you prepare a working standard that contains 2-chloroethyl vinyl ether mixed with other halocarbons, be sure to monitor the stability of this analyte.

EPA Method 8030A

Acrolein and acrylonitrile

Method 8030A is a purge and trap method for determining acrolein and acrylonitrile, using a flame ionization detector (FID). Method 8030A has been deleted from SW-846 (effective with Update III).

Recommended Method 8030A Acrolein-Acrylonitrile Mixtures IX

Description	Analytes	Total Vol.	Part No. 100 µg/mL	Part No. 2,000 µg/mL
2 analytes, in methanol*	Acrolein Acrylonitrile	1 x 1 mL	AMN-603-1	AMN-623-1

^{IX} Contains appendix IX compounds.

Acrolein-Acrylonitrile Mixtures in Water IX

Description	Analytes	Total Vol.	Part No. 1,000 µg/mL	Part No. 10,000 µg/mL
2 analytes, in water*	Acrolein Acrylonitrile	1 x 1 mL	AMN-613-1	AMN-803-1

IX Contains appendix IX compounds.

* See Technical note.

EPA Method 8031, 8032A, 8033

Recommended Method Standards

EPA Method	Compound	Concentration	Volume	Part No.
8031	Acrylonitrile	1,000 µg/mL, in methanol	1 x 1 mL	AMN-813-1
8032A	Acrylamide	1,000 µg/mL, in methanol	1 x 1 mL	AMN-823-1
	Dimethyl phthalate	100 µg/mL, in methanol	1 x 1 mL	PS-140-1
8033	Acetonitrile	100 µg/mL, in methanol	1 x 1 mL	NV-110-1

Technical note: Acrolein standards

Acrolein is known to undergo polymerization with time. Agilent prepares the standards which contain acrolein every month to ensure the accuracy of each standard's certified values. These standards are assigned expiration dates of three months. Agilent strongly recommends that these standards be used as soon as possible after receipt.

EPA Method 8041A

Phenols

Method 8041A is used to measure phenols. Samples are extracted, then concentrated in a Kuderna-Danish apparatus. Quantitation is by GC/FID, or the extract is derivatized and determined by GC with an ECD.

Recommended Method 8041A Phenols Mixture ^{IX}

Description	Analytes		Total Vol.	Part No.
9 analytes, at 2,000 µg/mL, in isopropanol	4-Chloro-3-methylphenol o-Cresol 2,4-Dichlorophenol 4,6-Dinitro-2-methylphenol	4-Nitrophenol Pentachlorophenol Phenol 2,4,6-Trichlorophenol	1 x 1 mL	PHM-814-1
	2-Nitrophenol			

^{IX} Contains appendix IX compounds.

Recommended Method 8041A Phenols Mixture ^{IX}

Description	Analytes		Total Vol.	Part No.
9 analytes, at 2,000 μg/mL, in isopropanol	2-Chlorophenol <i>m</i> -Cresol <i>p</i> -Cresol 2,6-Dichlorophenol 2,4-Dimethylphenol	2,4-Dinitrophenol Dinoseb 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	1 x 1 mL	PHM-824-1

IX Contains appendix IX compounds.

Method 8041A Phenols Mixture

Description	Analytes		Total Vol.	Part No
3 analytes, at 2,000 μg/mL, in isopropanol	2-Cyclohexyl-4,6-dinitrophenol 2,3,4,5-Tetrachlorophenol	2,3,5,6-Tetrachlorophenol	1 x 1 mL	PHM-844-1

Recommended Method 8041A Internal Standard Mixture

Description	Analytes		Total Vol.	Part No.
2 analytes, at 1,000 µg/mL, in isopropanol	2,5-Dibromotoluene	2,2,5,5-Tetrabromobiphenyl	1 x 1 mL	ISM-610-1

Recommended Method 8041A Surrogate Standard

Description	Analyte	Total Vol.	Part No.
1 analyte, at 1,000 µg/mL, in isopropanol	2,4-Dibromophenol	1 x 1 mL	IST-620-1

Recommended Standards

1 analyte, at 1,000 µg/mL, in isopropanol	2,4-Dibromophenol		1 x 1 mL	IST-620-1	EPA Method 8041A	Part No.
Surrogate Standard Mixture					Calibration standards	PHM-814-1 PHM-824-1
Description	Analytes		Total Vol.	Part No.	Surrogate standard	IST-620-1
2 analytes, at 2,000 µg/mL, in isopropanol	2-Fluorophenol	2,4,6-Tribromophenol	1 x 1 mL	ISM-380-1	Internal standard	ISM-610-1

Technical note

Phenols are subject to absorption on the active sites of GC columns. The more acidic phenols, such as 2,4-dinitrophenol, will chromatograph poorly leading to poor quantitation.

EPA Method 8061A

Phthalate esters

Method 8061 is used to measure phthalates. Samples are extracted, then quantitated with capillary GC/ECD.

Recommended Method 8061A Phthalates Mixtures ^{IX}

Description	Analytes			Total Vol.	Part No. 100 µg/mL in Methanol	Part No. 1,000 µg/mL in Isooctane
6 analytes	Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	Di- <i>n</i> -butyl phthalate Diethyl phthalate	Dimethyl phthalate Di- <i>n</i> -octyl phthalate	1 x 1 mL	PSM-606-1	PSM-806-1

^{IX} Contains appendix IX compounds.

Phthalates Mixture

Description	Analytes			Total Vol.	Part No.
16 analytes, at 1,000 μg/mL, in isooctane	Bis(2- <i>n</i> -butoxyethyl) phthalate Bis(2-ethoxyethyl) phthalate Bis(2-ethylhexyl) phthalate Bis(2-methoxyethyl) phthalate Bis(4-methyl-2-pentyl) phthalate Butyl benzyl phthalate	Dicyclohexyl phthalate 2-Ethylhexyl hexyl phthalate Diamyl phthalate Diethyl phthalate Dihexyl phthalate	Diisobutyl phthalate Dimethyl phthalate Dinonyl phthalate Di- <i>n</i> -octyl phthalate Di- <i>n</i> -butyl phthalate	1 x 1 mL	PSM-826-1

Recommended Method 8061A Surrogate Standard Mixture

Description	Analytes			Total Vol.	Part No.
3 analytes, 500 µg/mL in acetone	Dibenzyl phthalate	Diphenyl isophthalate	Diphenyl phthalate	1 x 1 mL	ISM-390-1

Phthalate Esters QC Reference Mix (PHE)

Description	Analytes and Concentration				Total Vol.	Part No.
6 analytes, in acetone	Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Dimethyl phthalate	50 μg/mL 10 μg/mL 25 μg/mL	Di- <i>n</i> -butyl phthalate Diethyl phthalate Di-n-octyl phthalate	25 μg/mL 25 μg/mL 50 μg/mL	1 x 1 mL	EPA-2037N-1

Recommended Method 8061A Internal Standard

Description	Analyte	Total Vol.	Part No.
1 analyte, at 5,000 μg/mL, in hexane	Benzyl benzoate	1 x 1 mL	IST-400-1

EPA Method 8061A Kit

Description	Standards	Part No.
Contains 3 ampoules, 1 x 1 mL of each standard	Phthalates mixture (PSM-806-1)	PSK-8061
	Surrogate standard mix (ISM-390-1)	
	Internal standard (IST-400-1)	

EPA Method 8061A	Part No.
Calibration standard	PSM-806-1
Surrogate standard	ISM-390-1
Internal standard	IST-400-1

EPA Method 8070A

Nitrosamines

Method 8070A is used to measure nitrosamines. Samples are quantitated by GC/NPD.

Recommended Method 8070A Nitrosamines Mixtures IX

Description	Analytes	Total Vol.	Part No.
3 analytes, at 2,000 μg/mL, in methanol	N-Nitrosodimethylamine N-Nitrosodiphenylamine N-Nitrosodi- <i>n</i> -propylamine	1 x 1 mL	NSM-807-1

Recommended Standards

EPA Method 8070A	Part No.
Calibration standards	NSM-807-1 IST-400-1

IX Contains appendix IX compounds.

EPA Method 8080A

Organochlorine pesticides and PCBs

Method 8080A is used to measure organochlorine pesticides and PCBs, using extraction followed by GC/ECD. Method 8080A has been deleted from SW-846 (effective with Update III).

Recommended Method 8080A Organochlorine Pesticides Mix

Description	Analytes		Total Vol.	Part No.
17 analytes, at 250 μg/mL, in hexane/toluene (1:1)	Aldrin α-BHC β-BHC δ-BHC Y-BHC (lindane) 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin	Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide (B) Methoxychlor (at 1,000 µg/mL)	1 x 1 mL	PPM-808B-1

Recommended Method 8080A Organochlorine Pesticides Mix

Description	Analytes		Total Vol.	Part No.
17 analytes, at 2,000 μg/mL, in acetone	Aldrin α-BHC β-BHC δ-BHC Y-BHC (lindane) 4,4'-DDD 4,4'-DDT	Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide (B) Methoxychlor	1 x 1 mL	US-112B
	Dieldrin			

Technical note

Chlordane, toxaphene, and the aroclors are examples of technical mixtures composed of many compounds. Due to variations in the manufacturing process, the exact composition of these mixtures varies from lot to lot.

It has been shown that endrin and DDT decompose on splitless injectors. On-column injection may be warranted.

Recommended Standards

Part No.

PPM-808B-1 US-112B-1

ISM-320-1

EPA Method 8080A

Calibration standards

Surrogate standard

EPA Method 8081B

Organochlorine pesticides

Method 8081B is used to measure organochlorine pesticides, using extraction followed by capillary GC/ECD.

Recommended Method 8081B Organochlorine Pesticides Mixture

Description	Analytes		Total Vol.	Part No.
20 analytes,	Aldrin	Dieldrin	1 x 1 mL	PPM-808C-1
at 1,000 µg/mL,	α-BHC	Endosulfan I		
in hexane/toluene (1:1)	β-ΒΗC	Endosulfan II		
	δ-BHC	Endosulfan sulfate		
	γ-BHC (lindane)	Endrin		
	a-Chlordane	Endrin aldehyde		
	γ-Chlordane	Endrin ketone		
	4,4 ⁻ -DDD	Heptachlor		
	4,4 ⁻ -DDE	Heptachlor epoxide (isomer B)		
	4,4´-DDT	Methoxychlor		

Recommended Method 8081B Organochlorine Pesticides Mixture

Description	Analytes		Total Vol.	Part No.
6 analytes, at 1,000 μg/mL, in hexane/toluene (1:1)	Chlorobenzilate Diallate 1,2-Dibromo-3-chloropropane	Hexachlorobenzene Hexachlorocyclopentadiene Isodrin	1 x 1 mL	PPM-808F-1

Recommended Method 8081B Pesticides Surrogate Standard Spiking Solution

Description	Analytes		Total Vol.	Part No.
2 analytes, at 200 μg/mL, in acetone	Decachlorobiphenyl	2,4,5,6-Tetrachloro- <i>m</i> -xylene	1 x 1 mL	ISM-320-1

Recommended Method 8081B Internal Standards

Description	Standards	Total Vol.	Part No.
2 standards, at 5,000 μg/mL, in acetone	1-Bromo-2-nitrobenzene	1 x 1 mL	PPS-351-1
	Pentachloronitrobenzene	1 x 1 mL	PPS-133-1

EPA Method 8081B Kit

Description	Standards	Part No.
Contains 4 ampoules,	Pesticides mixture (PPM-808C-1)	PPK-8081
1 x 1 mL of each standard	Pesticides mixture (PPM-808F-1)	
	Surrogate standard mix (ISM-320-1)	
	Internal standard (PPS-351-1)	

Recommended Standards

EPA Method 8081B	Part No.
Calibration standards	PPM-808C-1 PPM-808F-1
Surrogate standard	ISM-320-1
Internal standards	PPS-351-1 PPS-133-1

Technical note

Chlordane, toxaphene, strobane, and the halowaxes are examples of technical mixtures composed of many compounds. Due to variations in the manufacturing process, the exact composition of these mixtures varies from lot to lot.

It has been shown that endrin and DDT decompose on splitless injectors. On-column injection may be warranted.

EPA Method 8082A

Polychlorinated biphenyls (PCBs)

Method 8082A is used to determine the concentrations of polychlorinated biphenyls (PCBs) as aroclors, or as individual PCB congeners in extracts from solid and aqueous matrices. Open tubular capillary columns are employed with electron capture detectors (ECD) or electrolytic conductivity detectors (ELCD).

Method 8082A PCB Congeners Mixture

Description	Analytes		Total Vol.	Part No.
19 analytes,	2-Chlorobiphenyl (BZ # 1)	2,2',3,4,4',5'-Hexachlorobiphenyl (BZ # 138)	1 x 1 mL	RPCM-8082-1
at 100 µg/mL,	2,3-Dichlorobiphenyl (BZ # 5)	2,2',3,4,5,5'-Hexachlorobiphenyl (BZ # 141)		
in isooctane	2,2',5-Trichlorobiphenyl (BZ # 18)	2,2',3,5,5',6-Hexachlorobiphenyl (BZ # 151)		
	2,4',5-Trichlorobiphenyl (BZ # 31)	2,2',4,4',5,5'-Hexachlorobiphenyl (BZ # 153)		
	2,2',3,5'-Tetrachlorobiphenyl (BZ # 44)	2,2',3,3',4,4',5-Heptachlorobiphenyl (BZ # 170)		
	2,2',5,5'-Tetrachlorobiphenyl (BZ # 52)	2,2',3,4,4',5,5'-Heptachlorobiphenyl (BZ # 180)		
	2,3',4,4'-Tetrachlorobiphenyl (BZ # 66)	2,2',3,4,4',5',6-Heptachlorobiphenyl (BZ # 183)		
	2,2',3,4,5'-Pentachlorobiphenyl (BZ # 87)	2,2',3,4',5,5',6-Heptachlorobiphenyl (BZ # 187)		
	2,2',4,5,5'-Pentachlorobiphenyl (BZ # 101)	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl (BZ # 206)		
	2,3,3',4',6-Pentachlorobiphenyl (BZ # 110)			

Recommended Method 8082A Calibration Stock Solution

Description	Analytes		Total Vol.	Part No.
2 analytes, at 1,000 µg/mL, in isooctane	Aroclor 1016	Aroclor 1260	1 x 1 mL	PPM-8082-1

Internal and Surrogate Standards

Standards	Concentration	Total Vol.	Part No.	
Decachlorobiphenyl	1,000 µg/mL, in toluene	1 x 1 mL	PPS-150-1	
2,4,5,6-Tetrachloro- <i>m</i> -xylene	2,000 µg/mL, in acetone	1 x 1 mL	IST-440-1	

Recommended Method 8082A PCB Standards

Standards	Concentration	Total Vol.	Part No.	
Aroclor 1016	100 µg/mL, in isooctane	1 x 1 mL	PP-282-1	
Aroclor 1221			PP-292-1	
Aroclor 1232			PP-302-1	
Aroclor 1242			PP-312-1	
Aroclor 1248			PP-342-1	
Aroclor 1254			PP-352-1	
Aroclor 1260			PP-362-1	
Aroclor 1262			PP-372-1	
Aroclor 1268			PP-382-1	

Recommended Standard

EPA Method 8082A	Part No.
Calibration standard	PPM-8082-1

Technical note

This method may be used to determine PCBs as either aroclors or as individual congeners. Only 19 congeners have been tested, but the method may be appropriate for additional congeners. Decachlorobiphenyl is used as an internal standard only when individual congeners are being tested. No internal standard is used for aroclor determinations.

Decachlorobiphenyl is used as a surrogate standard for aroclor determinations. Tetrachloro-*m*-xylene is used as a surrogate for individual congeners. Aroclors are examples of technical mixtures composed of many compounds. Due to variations in the manufacturing process, the exact composition of these mixtures varies from lot to lot.

Nitroaromatics and cyclic ketones

Method 8091 is used to measure nitroaromatics and cyclic ketones. Samples are extracted, then quantitated with GC/NPD and GC/ECD.

Recommended Method 8091 Composite Stock Solution IX

Description	Analytes	Total Vol.	Part No.
6 analytes, at 40 μg/mL, in isooctane	1,4-Dinitrobenzene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,4-Naphthoquinone Nitrobenzene Pentachloronitrobenzene	1 x 1 mL	NAIM-809B-1

^{IX} Contains appendix IX compounds.

Recommended Method 8091 Surrogate Standard

Description	Standard	Total Vol.	Part No.
1 standard, at 1,000 µg/mL, in acetone	1-Chloro-3-nitrobenzene	1 x 1 mL	IST-630-1

Recommended Method 8091 Internal Standard

Description	Standard	Total Vol.	Part No.
1 standard, at 1,000 μg/mL, in acetone	Hexachlorobenzene	1 x 1 mL	EPA-1125

Order from Agilent

Visit us online at **www.agilent.com** at any time and search for the products you need. If we don't have an item listed, you can request a custom quote online.

Alternatively, call our experienced customer service representatives for the information you need about Agilent products and your order. Visit **www.agilent.com/chem/contactus** to find out how.

Explosives

Method 8095 is used to measure explosives, using extraction followed by capillary GC/ECD.

Recommended Method 8095 Calibration Standard A

Description	Analytes		Total Vol.	Part No.
10 analytes, at 1 μg/mL, in acetonitrile	1,3-Dinitrobenzene 2,6-Dinitrotoluene 2,4-Dinitrotoluene 4-Amino-2,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene	HMX RDX Tetryl 1,3,5-Trinitrobenzene 2,4,6-Trinitrotoluene	1 x 1 mL	NAIM-8095A-1

Recommended Method 8095 Calibration Standard B

Description	Analytes and Co	Analytes and Concentration			Total Vol.	Part No.
6 analytes, in acetonitrile	Nitrobenzene Nitroglycerine 3-Nitrotoluene	5 μg/mL 5 μg/mL 5 μg/mL	2-Nitrotoluene 4-Nitrotoluene PETN	5 μg/mL 5 μg/mL 5 μg/mL	1 x 1 mL	NAIM-8095B-1

Recommended Method 8095 Surrogate Standards

Description	Standards	Total Vol.	Part No.
2 standards,	3,4-Dinitrotoluene	1 x 1 mL	IST-701-1
at 250 µg/mL, in acetonitrile	2-Methyl-4-nitroaniline	1 x 1 mL	IST-702-1

EPA Method 8095	Part No.
Calibration standards	NAIM-8095A-1 NAIM-8095B-1
Surrogate standards	IST-701-1 IST-702-1

Polynuclear aromatic hydrocarbons

Method 8100 is used to measure polynuclear aromatic hydrocarbons, using extraction followed by GC/ FID. Either packed or capillary columns may be used.

Recommended Method 8100 PAH Mixture IX

Description	Analytes and Concentra	ition			Total Vol.	Part No.
16 analytes, in methylene chloride	Acenaphthene Acenaphthylene Anthracene Benz[<i>a</i>]anthracene Benzo[<i>b</i>]fluoranthene Benzo[<i>k</i>]fluoranthene Benzo[<i>gh</i>]perylene Benzo[<i>a</i>]pyrene	1,000 µg/mL 1,000 µg/mL 1,000 µg/mL 100 µg/mL 100 µg/mL 50 µg/mL 100 µg/mL 100 µg/mL	Chrysene Dibenz[<i>a,h</i>]anthracene Fluoranthene Indeno[1,2,3- <i>ca</i>]pyrene Naphthalene Phenanthrene Pyrene	100 µg/mL 100 µg/mL 1,000 µg/mL 1,000 µg/mL 1,000 µg/mL 1,000 µg/mL 1,000 µg/mL	1 x 1 mL	PM-810-1

IX Contains appendix IX compounds.

PAH QC Reference Mixture IX

Description	Analytes and Concentra	tion			Total Vol.	Part No.
16 analytes, in acetonitrile	Acenaphthene Acenaphthylene Anthracene Benz[<i>a</i>]anthracene Benzo[<i>b</i>]fluoranthene Benzo[<i>k</i>]fluoranthene Benzo[<i>a</i>]pyrene	100 µg/mL 100 µg/mL 100 µg/mL 10 µg/mL 10 µg/mL 5 µg/mL 10 µg/mL 10 µg/mL	Chrysene Dibenz[<i>a,h</i>]anthracene Fluoranthene Indeno[1,2,3- <i>cd</i>]pyrene Naphthalene Phenanthrene Pyrene	10 μg/mL 10 μg/mL 10 μg/mL 100 μg/mL 10 μg/mL 100 μg/mL 100 μg/mL 100 μg/mL	1 x 1 mL	PM-613A-1

^{IX} Contains appendix IX compounds.

PAH Mixture

Description	Analytes		Total Vol.	Part No.
8 analytes, at 1,000 µg/mL, in methylene chloride	Dibenz[<i>a,h</i>]acridine Dibenz[<i>a,</i>]acridine 7H-Dibenzo[<i>c,g</i>]carbazole Benzo[/f]uoranthene	3-Methylcholanthrene Dibenzo[<i>a,e</i>]pyrene Dibenzo[<i>a,h</i>]pyrene Dibenzo[<i>a,h</i>]pyrene	1 x 1 mL	PM-811-1

Recommended Method 8100 Surrogate Standards

Standards	Concentration	Total Vol.	Part No.
1-Fluoronaphthalene	1,000 μ g/mL, in methylene chloride	1 x 1 mL	IST-180-1
2-Fluorobiphenyl	2,000 μ g/mL, in methylene chloride	1 x 1 mL	ATS-140-1

EPA Method 8100	Part No.
Calibration standard	PM-810-1
Surrogate standards	IST-180-1 ATS-140-1

Chlorinated hydrocarbons

Method 8121 are used to measure chlorinated hydrocarbons, using extraction followed by capillary column GC/ECD.

Recommended Method 8121 Chlorinated Hydrocarbons Mixture

Description	Analytes and Concentratic	n			Total Vol.	Part No.
22 analytes, in hexane	Benzal chloride Benzotrichloride Benzyl chloride α-BHC β-BHC δ-BHC Y-BHC (lindane) 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	100 µg/mL 100 µg/mL 100 µg/mL 100 µg/mL 100 µg/mL 100 µg/mL 2,000 µg/mL 1,000 µg/mL 1,000 µg/mL 1,000 µg/mL	Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorobenzene 1,2,3,4-Tetrachlorobenzene 1,2,3,5-Tetrachlorobenzene 1,2,4,5-Tetrachlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,3,5-Trichlorobenzene	10 μg/mL 10 μg/mL 10 μg/mL 10 μg/mL 10 μg/mL 100 μg/mL 100 μg/mL 100 μg/mL 100 μg/mL 100 μg/mL	1 x 1 mL	CHM-842A-1

Recommended Method 8121 Surrogate Standard Mixture

Description	Analytes and Concentration		Total Vol.	Part No.
3 analytes, in acetone	1,4-Dichloronaphthalene 2,3,4,5,6-Pentachlorotoluene α,2,6-Trichlorotoluene	10 μg/mL 1 μg/mL 1 μg/mL	1 x 1 mL	ISM-411-1

Recommended Method 8121 Internal Standard

Description	Analyte	Total Vol.	Part No.
1 analyte, at 50 μg/mL, in acetone	1,3,5-Tribromobenzene	1 x 1 mL	IST-420-1

Recommended Standards

EPA Method 8121	Part No.
Calibration standard	CHM-842A-1
Internal standard	IST-420-1
Surrogate standard	ISM-411-1

Tips and tools

To view our entire portfolio of over 7,000 standards, all manufactured under ISO 9001, ISO 17025, and Guide 34, visit www.agilent.com/chem/standards

EPA Method 8141B

Organophosphorus pesticides

Method 8141B is used to measure organophosphorus pesticides, using extraction. Quantitation is carried out on GC, using either a NPD, a FPD, or an ELCD.

Recommended Method 8141B Organophosphorus Pesticides Mixture

Description	Analytes			Total Vol.	Part No.
20 analytes, at 200 μg/mL, in hexane/acetone	Azinphos methyl Bolstar Chlorpyrifos Coumaphos Demeton (total) Diazinon Dichlorvos	Disulfoton Ethoprop Fensulfothion Fenthion Merphos Methyl parathion Mevinphos	Naled Phorate Ronnel Stirofos Tokuthion Trichloronate	1 x 1 mL	SPM-824-1

Recommended Method 8141B Organophosphorus Pesticides Mixture

Description	Analytes			Total Vol.	Part No.
7 analytes, at 200 µg/mL, in hexane/acetone (1:1)	Dimethoate EPN Malathion	Monocrotophos Parathion	Sulfotepp TEPP	1 x 1 mL	SPM-834-1

Recommended Method 8141B Organophosphorus Pesticides Mixture

Description	Analytes			Total Vol.	Part No.
10 analytes, at 200 μg/mL, in hexane/acetone	Azinphos ethyl Carbophenothion Chlorfenvinphos Dioxathion	Ethion Famphur Leptophos	Phosmet Phosphamidon Terbuphos	1 x 1 mL	SPM-844A-1

Recommended Method 8141B Organophosphorus Pesticides Mixture

Description	Analytes			Total Vol.	Part No.
9 analtyes, at 200 µg/mL, in hexane/acetone	Aspon Chlorpyrifos methyl Crotoxyphos	Dichlofenthion Dicrotophos Fenitrothion	Fonofos Thionazin Trichlorfon	1 x 1 mL	SPM-854-1

EPA Method 8141B Kit

Description	Standards				Part No.
Contains 9 ampoules, 1 x 1 mL of each standard	Pesticides mixture Pesticides mixture Pesticides mixture Pesticides mixture Industrial chemicals mix	(SPM-824-1) (SPM-834-1) (SPM-844A-1) (SPM-854-1) (SPM-854-1)	Triazine herbicides mix Carbamates mixture Surrogate standard mix Internal standard	(SPM-874-1) (SPM-884-1) (ISM-570-1) (PPS-350-1)	SPK-8141B

Technical note: Organophosphorus pesticide standards

Some of the organophosphorus pesticides in the Agilent product number SPM-824 are unstable in solution. Agilent prepares this standard every month to ensure the accuracy of each standard's certified values. These standards are assigned expiration dates of three months. Agilent strongly recommends that these standards be used as soon as possible after receipt.

Recommended Standards			
EPA Method 8141B	Part No.		
Calibration standards	SPM-824-1 SPM-834-1 SPM-844A-1 SPM-854-1 SPM-864-1 SPM-874-1 SPM-884-1		
Internal standard	PPS-350-1		
Surrogate standards	ISM-570-1 PPS-360-1		

EPA Method 8150B, 8151A

Chlorinated herbicides

Methods 8150B and 8151 are used to measure chlorinated herbicides, using extraction followed by derivatization. Quantitation is carried out on GC/ECD. Method 8150B has been deleted from SW-846 (effective with Update III).

Recommended Method 8150B Chlorinated Herbicides Mixtures

Description	Analytes and Concen	tration	Total Vol.	Mixture	Part No.
10 analytes,	2,4-D	100 µg/mL	1 x 1 mL	Herbicide acids	HBM-8150A-1
in methanol Dalapon 250 µg/mL 2,4-DB 100 µg/mL	Dalapon	250 µg/mL			
	Methylated herbicide	HBM-8150M-1			
	Dicamba	10 µg/mL			
	Dichlorprop	100 µg/mL			
	Dinoseb	50 µg/mL			
	MCPA	10,000 µg/mL			
	MCPP	10,000 µg/mL			
	Silvex (2,4,5-TP)	10 µg/mL			
	2,4,5-T	10 µg/mL			

Recommended Method 8151A Chlorinated Herbicides Mixtures

Description	Analytes		Total Vol.	Mixture	Part No.
18 analytes,	Acifluorfen	Dichlorprop	1x1mL	Herbicide acids	HBM-8151A-1
at 100 μg/mL, in methanol	Bentazon Chloramben 2,4-D Dalapon 2.4-DB	Dinoseb MCPA (at 10,000 µg/mL) MCPP (at 10,000 µg/mL) 4-Nitrophenol Pentachlorophenol		Methylated herbicide	HBM-8151M-1
	Z,4-DB DCPA Dicamba 3,5-Dichlorobenzoic acid	Picloram Silvex (2,4,5-TP) 2,4,5-T			

Chlorophenoxy Herbicides Mixture (HER)

Description	Analytes	Total Vol.	Part No.
2 analytes, at 5 µg/mL, in acetonitrile	2,4-D Silvex (2,4,5-TP)	1 x 1 mL	EPA-2015N-1

Method 8150B	Part No.
Calibration standard	HBM-8150A-1
Internal standards	PPS-171-1 PPS-173-1
Surrogate standards	PPS-165-1 PPS-164X-1
Method 8151A	Part No.
Calibration standard	HBM-8151A-1
Internal standard	PPS-171-1
Surrogate standard	PPS-165-1

Chlorinated Herbicides Mixtures IX

Description	Analytes	Total Vol.	Mixture	Part No.
3 analytes,	2,4-D	1 x 1 mL	Herbicide acids	HBM-815A-1
at 100 µg/mL, in methanol	Silvex (2,4,5-TP) 2,4,5-T		Methylated herbicide	HBM-815M-1

^{IX} Contains appendix IX compounds.

Methylated Herbicides Mixture

Description	Analytes		Total Vol.	Part No.
8 analytes, at 20 μg/mL, in hexane	2,4-D Methyl ester Dalapon methyl ester 2,4-DB Methyl ester Dicamba methyl ester	Dichlorprop methyl ester Dinoseb methyl ether Silvex methyl ester (2,4,5-TP) 2,4,5-T Methyl ester	1 x 1 mL	HBM-8152M-1

Chlorinated Herbicides Mixture IX

Description	Analytes		Total Vol.	Part No.
10 analytes,	2,4-D	Dinoseb	1 x 1 mL	HBM-8153A-1
at 200 µg/mL,	Dalapon	MCPA		
in methanol	2,4-DB	MCPP		
	Dicamba	Silvex (2,4,5-TP)		
	Dichlorprop	2,4,5-T		

^{IX} Contains appendix IX compounds.

Shooters – Open and shoot spiking standards

No dilution required

Shooters are ready-to-shoot spiking solutions at working concentrations specified by the EPA methods. Just open the bottle and spike the sample.

Since these working level solutions are packaged in convenient bottles rather than ampoules, follow the EPA protocols for storage and stability checking of working standards. See the EPA method you are using for the specific protocol.

Internal and Surrogate Standard Solutions

Standard	Concentration	Total Vol.	Part No.
4,4´-Dibromooctafluorobiphenyl	250 μg/mL, in acetone	1 x 1 mL	PPS-171-1
2,4-Dichlorophenylacetic acid (DCAA)	100 µg/mL, in acetone	1 x 1 mL	PPS-165-1
DCAA methyl ester	100 µg/mL, in acetone	1 x 1 mL	PPS-166-1

Recommended Method 8150B Herbicides Surrogate Standard Spiking Solution

Description	Standard	Total Vol.	Part No.
1 standard, at 2 µg/mL, in methanol	2,4-Dichlorophenylacetic acid (DCAA)	1 x 25 mL	PPS-164X

Recommended Method 8150B Herbicides Internal Standard Spiking Solution

Description	Standard	Total Vol.	Part No.
1 standard, at 1 µg/mL, in methanol	4,4´-Dibromooctafluorobiphenyl (DBOB)	1 x 1 mL	PPS-173-1

EPA Method 8240B

Volatile halocarbons

Method 8240B is a GC/MS method for the determination of volatile organic compounds in a variety of solid waste matrices. Method 8240B has been deleted from SW-846 (effective with Update III).

Recommended Method 8240B Volatiles Mixture IX

Description	Analytes			Total Vol.	Part No.
37 analytes,	Acetone	1,4-Dichlorobenzene	4-Methyl-2-pentanone (MIBK)	1 x 1 mL	PMX-130-1
at 200 µg/mL,	Benzene	1,1-Dichloroethane	Methylene chloride		
in methanol	Bromodichloromethane	1,2-Dichloroethane	Styrene		
	Bromoform	1,1-Dichloroethene	1,1,2,2-Tetrachloroethane		
	2-Butanone (MEK)	trans-1,2-Dichloroethene	Tetrachloroethene		
	Carbon disulfide	1,2-Dichloropropane	Toluene		
	Carbon tetrachloride	cis-1,3-Dichloropropene	1,1,1-Trichloroethane		
	Chlorobenzene	trans-1,3-Dichloropropene	1,1,2-Trichloroethane		
	Chloroform	Ethanol	Trichloroethene		
	Dibromochloromethane	Ethylbenzene	o-Xylene		
	trans-1,4-Dichloro-2-butene	2-Hexanone	<i>m</i> -Xylene		
	1,2-Dichlorobenzene	lodomethane	<i>p</i> -Xylene		
	1,3-Dichlorobenzene		, ,		

IX Contains appendix IX compounds.

Recommended Method 8240B Volatiles Mixture

Description	Analytes			Total Vol.	Part No.
29 analytes, at 200 μg/mL, in methanol	Acetonitrile Allyl alcohol Allyl chloride Benzyl chloride Bis(2-chloroethyl) sulfide 2-Chloroethanol 3-Chloropropionitrile 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane Dibromomethane	1,3-Dichloro-2-propanol 1,2:3,4-Diepoxybutane 1,4-Dioxane Epichlorohydrin Ethyl methacrylate 2-Hydroxypropionitrile Isobutyl alcohol Malononitrile Methacrylonitrile Methacrylonitrile	Pentachloroethane 2-Picoline Propargyl alcohol Beta-propiolactone Propionitrile <i>n</i> -Propylamine Pyridine 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane	1 x 1 mL	PMX-141A-1

Nonhalogenated Volatiles Mixture IX

Description	Analytes	Total Vol.	Part No.
3 analytes, at 100 µg/mL, in methanol	Acetone Carbon disulfide 2-Hexanone	1 x 1 mL	NVM-8241-1

IX Contains appendix IX compounds.

EPA Method 8240B	Part No.
Calibration standards	PMX-130-1 PMX-141A-1 DWM-584-1 HC-070-1 HC-491-1 NV-240B-1
Internal standard	STM-270N-1
Surrogate standard	STM-260N-1

Recommended Method 8240B VOC Gas Mixtures IX

	, ,			Total Vol.	Part No. 200 µg/mL	Part No. 2,000 µg/mL
6 analytes, in methanol	Bromomethane Chloroethane	Chloromethane Dichlorodifluoromethane	Trichlorofluoromethane Vinyl chloride	1 x 1 mL	DWM-584-1	DWM-544-1

^{IX} Contains appendix IX compounds.

Recommended Method 8240B Surrogate Standard Mixtures

Description	Analytes			Total Vol.	Part No. 2,500 µg/mL	Part No. 1,000 µg/mL
3 analytes, in methanol	4-Bromofluorobenzene	1,2-Dichloroethane-d ₄	Toluene-d ₈	1 x 1 mL	STM-262-1	STM-260N-1

Recommended Method 8240B Internal Standard Mixtures

Description	Analytes			Total Vol.	Part No. 2,500 µg/mL	Part No. 1,000 µg/mL
3 analytes, in methanol	Bromochloromethane	1,4-Difluorobenzene	Chlorobenzene-d55	1 x 1 mL	STM-272-1	STM-270N-1

Volatiles Calibration Check Compounds Mixture

Description	Analytes			Total Vol.	Part No.
6 analytes, at 2,000 μg/mL, in methanol	Chloroform 1,1-Dichloroethene	1,2-Dichloropropane Ethylbenzene	Toluene Vinyl chloride	1 x 1 mL	CLP-110-1

Recommended Method 8240B Individual Standards

Standards	Concentration	Total Vol.	Part No.
2-Chloroethyl vinyl ether	100 µg/m, in methanol	1 x 1 mL	HC-070-1
Chloroprene (no xylenes)	100 µg/mL, in methanol	1 x 1 mL	HC-491-1
Vinyl acetate	100 µg/mL, in acetonitrile	1 x 1 mL	NV-240B-1

Volatiles System Performance Check Mixture

Description	Analytes			Total Vol.	Part No.
5 analytes, at 2,000 μg/mL, in methanol	Bromoform Chlorobenzene	Chloromethane 1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	1 x 1 mL	CLP-120-1

Volatiles Matrix Spiking Solutions

Description	Analytes			Total Vol.	Part No. 2,500 µg/mL	Part No. 1,000 µg/mL
5 analytes, in methanol	Benzene Chlorobenzene	1,1-Dichloroethene Toluene	Trichloroethene	1 x 1 mL	CLP-102-1	CLP-100N-1

Volatile GC/MS Calibration Standards (BFB)

Standard	Total Vol.	Part No. 25 µg/mL	Part No. 2,000 µg/mL	Part No. 2,500 µg/mL
4-Bromofluorobenzene (BFB), in methanol	1 x 1 mL	STS-111-1	STS-110N-1	STS-112-1

Technical note

2-Chloroethyl vinyl ether is stable in solution by itself, but breaks down in the presence of other halocarbons. Agilent therefore packages this analyte as a single component solution. If you prepare a working standard that contains 2-chloroethyl vinyl ether mixed with other halocarbons, be sure to monitor the stability of this analyte. In solution, vinyl acetate reacts rapidly with methanol. To avoid this problem, Agilent prepares vinyl acetate standards in acetonitrile. If a working standard is prepared by diluting this standard into methanol, use the working standard immediately.

EPA Method 8260B

Volatile organic compounds

Method 8260B is a capillary column GC/MS method for volatile organics, using purge and trap or direct injection.

Recommended Method 8260B VOC Mixtures

Description	Analytes			Total Vol.	Part No. 200 µg/mL	Part No. 2,000 µg/mL
60 analytes, in methanol	Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane <i>n</i> -Butylbenzene <i>sec</i> -Butylbenzene <i>tert</i> -Butylbenzene Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorototnane Chloroform Chloromethane 2-Chlorotoluene Dibromochloromethane	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene 1,2-Dichloropropane 2,2-Dichloropropane 1,3-Dichloropropane 1,1-Dichloropropane <i>cis</i> -1,3-Dichloropropene <i>trans</i> -1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene	Naphthalene <i>n</i> -Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride	1 x 1 mL	200 µg/mL DWM-580-1	2,000 µg/mL DWM-588-1
	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane Dibromomethane	Isopropylbenzene 4-Isopropyltoluene Methylene chloride	<i>o</i> -Xylene <i>m</i> -Xylene <i>p</i> -Xylene			

Recommended Method 8260B Surrogate Standard Mixture

Description	escription Analytes		Part No.
4 analytes, at 2,500 µg/mL, in methanol	4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d ₄ Toluene-d ₈	1 x 1 mL	STM-530-1

Recommended Method 8260B Internal Standard Mixture

Description	Analytes	Total Vol.	Part No.
3 analytes, at 2,500 μg/mL, in methanol	Chlorobenzene-d ₅ 1,4-Dichlorobenzene-d ₄ Fluorobenzene	1 x 1 mL	STM-520-1

DWM-580-1

EPA Method 8260B Kit

Description	Standards				Part No.
Contains 12 ampoules,	VOC mixture	(DWM-588-1)	2-Chloroethyl Vinyl Ether	(HC-070-1)	DWK-8260
1 x 1 mL of each standard	Volatiles mixture	(PMX-144-1)	Chloroprene	(HC-491-1)	
	Volatiles mixture	(PMX-145-1)	Chloral hydrate	(EPA-1244)	
	Volatiles mixture	(PMX-146-1)	Vinyl acetate	(NV-240B)	
	Volatiles mixture	(NVM-826-1)	Surrogate standard mix	(STM-530-1)	
	Acrolein/acrylonitrile mix	(AMN-623-1)	Internal standard	(STM-520-1)	

Recommended Standards

EPA Method 8236B	Part No.
Calibration standards	DWM-588-1
	PMX-144-1
	PMX-145-1
	PMX-146-1
	NVM-826-1
	AMN-623-1
	HC-070-1
	HC-491-1
	NV-240B-1
	EPA-1244-1
Internal standard	STM-520-1
Surrogate standard	STM-530-1

Technical note

2-Chloroethyl vinyl ether is stable in solution by itself, but breaks down in the presence of other halocarbons. Agilent therefore packages this analyte as a single component solution. If you prepare a working standard that contains 2-chloroethyl vinyl ether mixed with other halocarbons, be sure to monitor the stability of this analyte.

In solution, vinyl acetate reacts rapidly with methanol. To avoid this problem, Agilent prepares vinyl acetate standards in acetonitrile. If a working standard is prepared by diluting this standard into methanol, use the working standard immediately.

Acrolein is known to undergo polymerization with time. Agilent prepares the standards which contain acrolein every month to ensure the accuracy of each standard's certified values. These standards are assigned expiration dates of three months. Agilent strongly recommends that these standards be used as soon as possible after receipt.

EPA Method 8270D

Semivolatile organic compounds and appendix ^{IX} semivolatiles

Method 8270D is a capillary column GC/MS method for semivolatile organics, using a capillary column.

Recommended Calibration Standards Kit for Appendix IX Compounds by Method 8270D $^{\rm IX}$

Description	Standards		Part No.
Contains 15 ampoules, 1 x 1 mL of each standard	Ethers and phthalates mixture (US-110-1) Chlorinated hydrocarbons mix (US-111-1) Nitrosamines mixture (US-113N-1) Base/neutrals mixture 3 (US-114-1) Base/neutrals mixture 4 (US-115-1) Toxic substances mixture 2 (US-104N-1) PAH mixture 1 (US-106N-1)	Phenols mixture 1 (US-107N-1) Phenols mixture 2 (US-117N-1) Pyridines mixture (US-120AN-1) Organochlorine pesticides mixture (US-112B-1) Organophosphorus pesticides mixture (US-119-1) Pesticides mixture (US-118-1) Internal standards mixture (US-108N-1)	US-121K

IX Contains appendix IX compounds.

Recommended Complete Method 8270D Standards Kit IX

Description	Standards	Part No.
Contains 17 ampoules, Calibration Standards Kit for Method 8270D (US-121K) plus 1 x 1 mL of each standard listed here	Base/neutral surrogate mix (ISM-280N-1) Acids surrogate mix (ISM-290N-1)	SVK-8270

Recommended Standards

EPA Method 8270D	Part No.
Calibration standard	US-121K
Internal standard	US-108N-1
Surrogate standards	ISM-280N-1 ISM-290N-1 ISM-333X

Tips and tools

To view our entire portfolio of over 7,000 standards, all manufactured under ISO 9001, ISO 17025, and Guide 34, visit www.agilent.com/chem/standards

Convenient OMNIprep mixtures

OMNIprep Semi-Volatiles Mix 1 ^{IX}

^{IX} Contains appendix IX compounds.

OMNIprep Semi-Volatiles Mix 2 IX

Description	Analytes		Total Vol.	Part No.	
35 analytes,	Acetophenone	2-Naphthylamine	1 x 1 mL	SVM-8271-1	
at 1,000 μg/mL,	2-Acetylaminofluorene	N-Nitrosodi-n-butylamine			(
n methylene chloride	4-Aminobiphenyl	N-Nitrosodiethylamine			
	Aniline	N-Nitrosomethylethylamine			
	Benzyl alcohol	N-Nitrosomorpholine			
	2,6-Dichlorophenol	N-Nitrosopiperidine			
	p-(Dimethylamino)azobenzene	N-Nitrosopyrrolidine			
	7,12-Dimethylbenz[a]anthracene	5-Nitro-o-toluidine			
	<i>m</i> -Dinitrobenzene	Pentachlorobenzene			1
	Dinoseb (DNBP)	Pentachloroethane			1
	Diphenylamine	Pentachloronitrobenzene			
	Ethyl methanesulfonate	Phenacetin			0. 4
	Hexachloropropene	Safrole			SVM
	Isosafrole	1,2,4,5-Tetrachlorobenzene			1. C
	3-Methylcholanthrene	2,3,4,6-Tetrachlorophenol			Se
	Methyl methanesulfonate	<i>o</i> -Toluidine			Marc
	3-Methylphenol (m-cresol)	1,3,5-Trinitrobenzene			ill bee
	1-Naphthylamine				

^{IX} Contains appendix IX compounds.

SVM-8270-1

Calibration mixtures for EPA Method 8270D

Recommended Method 8270D Toxic Substances Mix 2 ^{IX}

Description	Analytes			Total Vol.	Part No.
8 analytes, at 2,000 μg/mL, in methylene chloride	Aniline Benzyl alcohol 4-Chloroaniline	Dibenzofuran 2-Methylnaphthalene 2-Nitroaniline	3-Nitroaniline 4-Nitroaniline	1 x 1 mL	US-104N-1

^{IX} Contains appendix IX compounds.

Recommended Method 8270D PAH Mixture IX

Description	Analytes			Total Vol.	Part No.
16 analytes, at 2,000 µg/mL, in methylene chloride/benzene (1:1)	Acenaphthene Acenaphthylene Anthracene Benz[a]anthracene Benzo[b]fluoranthene Benzo[k]fluoranthene	Benzo[<i>ghi</i>]perylene Benzo[<i>a</i>]pyrene Chrysene Dibenz[<i>a.h</i>]anthracene Fluoranthene	Fluorene Indeno[1,2,3- <i>cd</i>]pyrene Naphthalene Phenanthrene Pyrene	1 x 1 mL	US-106N-1

IX Contains appendix IX compounds.

Recommended Method 8270D Phenols Mixture IX

Description	Analytes			Total Vol.	Part No.
11 analytes, at 2,000 μg/mL, in methylene chloride	4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Nitrophenol 4-Nitrophenol	Pentachlorophenol Phenol 2,4,6-Trichlorophenol	1 x 1 mL	US-107N-1

^{IX} Contains appendix IX compounds.

Recommended Method 8270D Ethers and Phthalates Mixture IX

Description	Analytes			Total Vol.	Part No.
11 analytes, at 2,000 μg/mL, in methylene chloride	Bis(2-chloroethoxy)methane Bis(2-chloroethyl) ether Bis(2-ethylhexyl) phthalate Bis(2-chloroisopropyl) ether	4-Bromophenyl phenyl ether Butyl benzyl phthalate 4-Chlorophenyl phenyl ether Diethyl phthalate	Dimethyl phthalate Di- <i>n</i> -butyl phthalate Di- <i>n</i> -octyl phthalate	1 x 1 mL	US-110-1

IX Contains appendix IX compounds.

Recommended Method 8270D Chlorinated Hydrocarbons Mix ^{IX}

Description	Analytes			Total Vol.	Part No.
13 analytes, at 2,000 μg/mL, in methylene chloride	2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Hexachlorobenzene	Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Hexachloropropene	Pentachlorobenzene Pentachloroethane 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	1 x 1 mL	US-111-1

^{IX} Contains appendix IX compounds.

Recommended Method 8270D Organochlorine Pesticides Mix ^{IX}

Description	Analytes			Total Vol.	Part No. 2.000 μg/mL in Acetone	Part No. 2,000 µg/mL in Hexane/Toluene (1:1)
17 analytes	Aldrin	4,4´-DDE	Endrin	1 x 1 mL	US-112B-1	US-112A-1
	α-BHC	4,4´-DDT	Endrin aldehyde			
	β-ΒΗС	Dieldrin	Heptachlor			
	δ-ΒΗС	Endosulfan I	Heptachlor epoxide (B)			
	γ-ΒΗС	Endosulfan II	Methoxychlor			
	4,4´-DDD	Endosulfan sulfate	5			

^{IX} Contains appendix IX compounds.

EPA Method 8280B and 8290A

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)

EPA Methods 8280B and 8290A are high-resolution GC methods. Method 8280B uses low-resolution mass spectrometry for detection (HRGC/LRMS), while 8290A uses high-resolution mass spectrometry (HRGC/HRMS) to quantitate the compounds of interest.

Methods 8280B and 8290A Chlorinated Dibenzo-p-dioxin Mix

Description	Analytes		Total Vol.	Part No.
5 analytes, at 10 μg/mL, in toluene	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin 1,2,3,7,8-Pentachlorodibenzo- <i>p</i> -dioxin 1,2,3,4,7,8-Hexachlorodibenzo- <i>p</i> -dioxin	1,2,3,4,6,7,8-Heptachlorodibenzo- <i>p</i> -dioxin Octachlorodibenzo-p-dioxin	1 x 1 mL	RPE-065M-1

Methods 8280B and 8290A Chlorinated Dibenzofuran Mixture

Description	Analytes		Total Vol.	Part No.
5 analytes, at 10 µg/mL, in toluene	2,3,7,8-Tetrachlorodibenzofuran 1,2,3,7,8-Pentachlorodibenzofuran 1,2,3,4,7,8-Hexachlorodibenzofuran	1,2,3,4,6,7,8-Heptachlorodibenzofuran Octachlorodibenzofuran	1 x 1 mL	RPE-045M-1

Chlorinated Dibenzo-p-dioxin and Dibenzofuran Standards

Standards	Concentration	Total Vol.	Part No.
2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin*	50 µg/mL, in toluene	1 x 1 mL	RPE-029S-1
1,2,3,7,8-Pentachlorodibenzo-p-dioxin			RPE-056S-1
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin			RPE-058S-1
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin			RPE-063S-1
Octachlorodibenzo-p-dioxin			RPE-017S-1
2,3,7,8-Tetrachlorodibenzofuran			RPE-037S-1
1,2,3,7,8-Pentachlorodibenzofuran			RPE-042S-1
1,2,3,4,7,8-Hexachlorodibenzofuran	_		RPE-043S-1
1,2,3,4,6,7,8-Heptachlorodibenzofuran			RPE-044S-1
Octachlorodibenzofuran			RPE-019S-1

* The 2,3,7,8-tetrachlorodibenzo-p-dioxin solution (RPE-029S) is at a concentration of 10 µg/mL in toluene.

Polynuclear aromatic hydrocarbons

Method 8310 is used to measure polynuclear aromatic hydrocarbons by HPLC.

Recommended Method 8310 PAH Mixture ^{IX}

Description	Analytes and Concentra	ition			Total Vol.	Part No.
16 analytes, in acetonitrile/methanol (9:1)	Acenaphthene Acenaphthylene Anthracene Benz[<i>a</i>]anthracene Benzo[<i>b</i>]fluoranthene Benzo[<i>k</i>]fluoranthene Benzo[<i>gh</i>]perylene Benzo[<i>a</i>]pyrene	1,000 µg/mL 500 µg/mL 20 µg/mL 50 µg/mL 20 µg/mL 20 µg/mL 80 µg/mL 50 µg/mL	Chrysene Dibenz[<i>a,h</i>]anthracene Fluoranthene Indeno[1,2,3- <i>cd</i>]pyrene Naphthalene Phenanthrene Pyrene	50 μg/mL 200 μg/mL 50 μg/mL 100 μg/mL 50 μg/mL 500 μg/mL 40 μg/mL 100 μg/mL	1 x 1 mL	PM-831A-1

^{IX} Contains appendix IX compounds.

PAH QC Reference Mixture IX

Description	Analytes and Concentra	tion			Total Vol.	Part No.
16 analytes, in acetonitrile	Acenaphthene Acenaphthylene	100 μg/mL 100 μg/mL	Chrysene Dibenz[<i>a,h</i>]anthracene	10 μg/mL 10 μg/mL	1 x 1 mL	PM-613A-1
	Anthracene Benz[a]anthracene	100 μg/mL 10 μg/mL	Fluoranthene Fluorene	10 μg/mL 100 μg/mL		
	Benzo[<i>b</i>]fluoranthene Benzo[<i>k</i>]fluoranthene	10 μg/mL 5 μg/mL	Indeno[1,2,3- <i>cd</i>]pyrene Naphthalene	10 μg/mL 100 μg/mL		
	Benzo[<i>ghi</i>]perylene Benzo[<i>a</i>]pyrene	10 μg/mL 10 μg/mL	Phenanthrene Pyrene	100 μg/mL 10 μg/mL		

IX Contains appendix IX compounds.

Method 8310 PAH Mixture IX

Description	Analytes		Total Vol.	Part No.
16 analytes, at 500 μg/mL, in acetonitrile/acetone/toluene (6:3:1)	Acenaphthene Acenaphthylene Anthracene Benz[<i>a</i>]anthracene Benzo[<i>b</i>]fluoranthene Benzo[<i>k</i>]fluoranthene Benzo[<i>a</i>]n]perylene Benzo[<i>a</i>]pyrene	Chrysene Dibenz[<i>a,h</i>]anthracene Fluoranthene Fluorene Indeno[1,2,3- <i>cd</i>]pyrene Naphthalene Phenanthrene Pyrene	1 x 1 mL	PM-831-1

^{IX} Contains appendix IX compounds.

EPA Method 8310	Part No.
Calibration standard	PM-831A-1

EPA Method 8315A

Carbonyl compounds

Method 8315A is used to determine free carbonyl compounds by derivitization followed by HPLC.

Recommended Method 8315A Carbonyl Compounds Mixture

Description	Analytes			Total Vol.	Part No.
20 analytes, at 100 μg/mL, in acetonitrile	Acetaldehyde Acetone Acrolein Benzaldehyde Butanal (butyraldehyde) Crotonaldehyde Cyclohexanone	Decanal 2,5-Dimethylbenzaldehyde Formaldehyde Heptanal Hexanal (hexaldehyde) Isovaleraldehyde Nonanal	Octanal Pentanal (valeraldehyde) Propanal (propionaldehyde) &Tolualdehyde <i>m</i> -Tolualdehyde <i>p</i> -Tolualdehyde	1 x 1 mL	ALD-8315-1

Method 8315A Derivatized Carbonyl Compounds Mixture

Description	Analytes			Total Vol.	Part No.
20 analytes, at 100 µg/mL, in acetonitrile	Acetaldehyde-DNPH Acetone-DNPH Acrolein-DNPH Benzaldehyde-DNPH Butanal-DNPH Crotonaldehyde-DNPH Cyclohexanone-DNPH	Decanal-DNPH 2,5-Dimethylbenzaldehyde-DNPH Formaldehyde-DNPH Heptanal-DNPH Hexanal-DNPH Isovaleraldehyde-DNPH Nonanal-DNPH	Octanal-DNPH Pentanal-DNPH Propanal-DNPH <i>m</i> -Tolualdehyde-DNPH <i>p</i> -Tolualdehyde-DNPH <i>p</i> -Tolualdehyde-DNPH	1 x 1 mL	ALD-8315D-1

Aldehydes Mixture				Recommended	Recommended Standard		
Description Analytes		Total Vol.	Part No.	EPA Method 8315A	Part No.		
2 analytes, at 1,000 µg/mL, in water	Acetaldehyde	Formaldehyde	1 x 1 mL	ALD-100-1	Calibration standard	ALD-8315-1	

EPA Method 8318A

N-methylcarbamates

Method 8318 is used to determine N-methylcarbamates by HPLC.

Recommended Method 8318A Carbamates Mixture

Description	Analytes		Total Vol.	Part No.
10 analytes, at 100 μg/mL, in methanol	Aldicarb Aldicarb sulfone Carbaryl Carbofuran Dioxacarb	3-Hydroxycarbofuran Methiocarb Methomyl Promecarb Propoxur (Baygon)	1 x 1 mL	PPM-831-1

Recommended Method 8318A Carbamates Mixture

Description	Analytes		Total Vol.	Part No.
6 analytes, at 100 μg/mL, in methanol	Bendiocarb Formetanate hydrochloride Metolcarb	Mexacarbate Oxamyl Thiodicarb	1 x 1 mL	PPM-831A-1

EPA Method 8318A	Part No.
Calibration standards	PPM-831-1 PPM-831A-1

EPA Method 8330A

Nitroaromatics and nitramines (explosives)

Method 8330A is used to measure explosives by HPLC.

Recommended Method 8330A Intermediate Stock Solution 1

Description	Analytes			Total Vol.	Part No.
7 analytes, at 1,000 µg/mL, in acetonitrile	HMX 1,3-Dinitrobenzene 2,4-Dinitrotoluene	Nitrobenzene RDX	1,3,5-Trinitrobenzene 2,4,6-Trinitrotoluene (TNT)	1 x 1 mL	NAIM-833A-1

Recommended Method 8330A Intermediate Stock Solution 2

Description	Analytes			Total Vol.	Part No.
7 analytes, at 1,000 μg/mL, in acetonitrile	2-Amino-4,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 2,6-Dinitrotoluene	2-Nitrotoluene 3-Nitrotoluene	4-Nitrotoluene Tetryl	1 x 1 mL	NAIM-833B-1

Internal and Surrogate Standards for Method 8330A

Standards	Concentration	Total Vol.	Part No.
3,4-Dinitrotoluene	1,000 µg/mL, in methanol	1 x 1 mL	IST-590-1
1,2-Dinitrobenzene	1,000 µg/mL, in methanol	1 x 1 mL	IST-600-1

Combined Stock Solution

Description	Analytes			Total Vol.	Part No.
12 analytes,	1,3-Dinitrobenzene	Nitrobenzene	RDX	1 x 1 mL	NAIM-833E-1
at 1,000 µg/mL,	2,4-Dinitrotoluene	2-Nitrotoluene	Tetryl		
in acetonitrile	2,6-Dinitrotoluene	3-Nitrotoluene	1,3,5-Trinitrobenzene		
	HMX	4-Nitrotoluene	2,4,6-Trinitrotoluene (TNT)		

Individual Explosive Standards for Method 8330A

Standards	Concentration	Total Vol.	Part No.
1,3-Dinitrobenzene	100 µg/mL, in methanol	1 x 1 mL	NAI-140-1
2,4-Dinitrotoluene			NAI-100-1
2,6-Dinitrotoluene			NAI-110-1
Nitrobenzene			NAI-130-1
1,3,5-Trinitrobenzene			NAI-170-1
4-Amino-2,6-dinitrotoluene	1,000 µg/mL, in acetonitrile	1 x 1 mL	EPA-1193-1
2-Amino-4,6-dinitrotoluene			EPA-1192-1
HMX			EPA-1221-1
2-Nitrotoluene			EPA-1227-1
3-Nitrotoluene			EPA-1228-1
4-Nitrotoluene			EPA-1229-1
RDX			EPA-1233-1
Tetryl			EPA-1237-1
2,4,6-Trinitrotoluene (TNT)			EPA-1243-1

EPA Method 8330A	Part No.
Calibration standards	NAIM-833A-1 NAIM-833B-1

Nitroglycerin

Method 8332 is used to measure nitroglycerin by HPLC.

Nitroglycerin Standard

Description	Analyte	Total Vol.	Part No.
1 analyte, at 10 μg/mL, in acetonitrile	Nitroglycerin	1 x 1 mL	NAI-270-1

EPA Method 8410

Semivolatile organics

Method 8410 is used to measure semivolatile organics by GC/FTIR. It is used to complement Method 8270D.

Internal Standard Mixture

Description	Analytes	Total Vol.	Part No.
2 analytes, at 2,000 µg/mL, in methylene chloride	1-Fluoronaphthalene <i>p</i> -terphenyl-d ₁₄	1 x 1 mL	ISM-430-1

EPA Method 8440

Total recoverable petroleum hydrocarbons

Method 8440 is used to measure total recoverable petroleum hydrocarbons (TRPHs) by IR.

Method 8440 Calibration Oil

Description	Component	%, v/v	Total Vol.	Part No.
3 components	<i>n</i> -Hexadecane Isooctane	37,50 37,50	1 x 1 mL	RGO-100-1
	Chlorobenzene	25,00		

Technical support at work for you

Have a hardware, software, application, instrument repair, or troubleshooting question? Agilent's technical experts are available to answer your questions. With years of laboratory experience, our technical support specialists can provide in-depth knowledge and experience.

For questions about supplies found in this catalog, contact your local Agilent office or authorized Agilent distributor. Or visit **www.agilent.com/chem/techsupport**

Agilent CrossLab services

Maximize uptime with end-to-end support

Trust Agilent CrossLab service experts to deliver valuable insights and keep your instruments running. Our industry-leading services include Technology Refresh, application consulting, repairs, preventive maintenance, and more. Ask us how we can support your laboratory today.

www.agilent.com/crosslab

Need more information?

Visit www.agilent.com/chem/contactus to:

- Locate your nearest Agilent office or distributor for expert technical support.
- Get fast sales and product assistance by phone. Simply use the scroll-down menu to select your country.
- Receive email assistance using our convenient online forms.

Contact us: www.agilent.com/chem/contactus

Buy online: www.agilent.com/chem/store

Get social with Agilent: www.agilent.com/chem/social

Explore our full range of catalogs: www.agilent.com/chem/catalog

031 336 90 00 • www.scantecnordic.se

This information is subject to change without notice.

© Agilent Technologies, Inc. 2019 Published in the USA, March 1, 2019 5994-0619EN

